Hoja del Maestro

Secuencia 12 Mediatriz y bisectriz
Sesión 3
Apliquemos nuestros conocimientos de mediatrices y bisectrices

Propósito:

  • Aplicar las propiedades de la mediatriz y la bisectriz en la resolución de diversos problemas.

Desarrollo:

  1. En la sección Manos a la obra se trabajará con el archivo "Ejes" el cual apoyará en la resolución de las siete actividades propuestas. Se sugiere que éstas se trabajen individualmente y al final se comparen las respuestas y procedimientos de manera grupal.
  2. Con las actividades 2 y 3 los alumnos podrán establecer relaciones entre los conceptos de mediatriz y bisectriz por medio del concepto de eje de simetría.
  3. Para resolver la actividad 4, es posible que los alumnos no recuerden cuáles son las diagonales de un polígono o cómo trazarlas, aún cuando ya lo estudiaron en la escuela primaria. Si es necesario, recuerde junto con ellos que una diagonal es el segmento que une dos vértices no consecutivos de un polígono.
  4. En la actividad 5, la clave para la resolución del problema es el trazo de la mediatriz; esto es, trazar un segmento y posteriormente su mediatriz. Después, con centro en el punto donde se cortan las mediatrices y tomando como radio la distancia de ese centro a un extremo del segmento, se traza una circunferencia. En la circunferencia quedan marcados los cuatro vértices del cuadrado, al unirlos se forma el cuadrado.
  5. La herramienta que permite resolver la actividad 6 es el trazo de las mediatrices de cada segmento que unen a los puntos A, B y C. El punto buscado es aquel donde se unen las tres mediatrices. La dificultad está en que los alumnos identifiquen que la equidistancia de los puntos que conforman la mediatriz, es la característica que les permite resolver el problema.
  6. La actividad 7 es un problema con un grado de dificultad similar al anterior, pero se resuelve con la bisectriz. Hay que trazar la bisectriz de cada uno de los ángulos del triángulo. El punto buscado es justamente donde se cortan las bisectrices
  7. Se sugiere integrar las actividades 6 y 7 al portafolios de cada uno de los alumnos
Hoja del alumno
Ejes